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Abstract. The partial decay rate of the Z boson into bottom quarks constitutes an important decay
channel. This is mainly due to the virtual presence of the top quark in the loop diagrams giving rise to
correction factors which are quadratic in the top quark mass. At one- and two-loop order it turned out
that the leading term in the heavy-top expansion leads to very good approximations to the exact result.
In this work the non-singlet diagrams at O(α2

sGF M2
t ) are considered.

The impressive experimental precision mainly at the Large
Electron Positron collider (LEP) at CERN, the Stanford
Linear Collider (SLC) and the FERMILAB Tevatron in
Chicago has made it mandatory to evaluate higher or-
der quantum corrections to the processes observed in the
experiments [1]. The strategy to combine experimental in-
formation with theoretical computations has successfully
been applied to the search for the top quark several years
ago. Nowadays the same concept is used in order to pin
down the mass of the Higgs boson, the only not yet discov-
ered particle of the Standard Model of elementary particle
physics.

An important observable is the decay of the Z boson
into bottom. QCD corrections are known up to O(α3

s) (for
a comprehensive review see [2]). The electroweak one-loop
corrections are known since quite some time [3]. They have
the interesting feature that the top quark appears virtu-
ally in the loop diagrams. Recently also the full corrections
of O(ααs) were completed [4–6]. The diagrams involving
a top quark are considered in [6] where the first five terms
in the expansion for a heavy top quark mass, Mt, is com-
puted. It was demonstrated that these terms approximate
the exact result quite well. Actually it turned out that
both at O(α) and O(ααs) a large cancellation between
the sub-leading terms takes place and effectively only the
leading term proportional to GF M2

t [7] remains. This is a
strong motivation to look at the next order in the strong
coupling constant and evaluate the leading terms. To the
corrections enhanced by the top quark mass only those
contributions have to be considered where a scalar par-
ticle, namely the Higgs boson, H, the neutral Goldstone
boson, χ, or the charged one, φ±, couples to the top quark.
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Thus no diagrams have to be considered where the W or
Z boson appear as internal lines.

Corrections of this order were first computed for the
ρ parameter [8], the ratio of the charged and neutral cur-
rent amplitude, where it turned out that they are quite
important [9]. Later on also the hadronic Higgs decay was
analyzed at O(α2

sGF M2
t ) [10,11]. In the case of the Higgs

boson one can exploit that the scalar coupling is propor-
tional to the mass which simplifies the construction of an
effective Lagrangian and especially the subsequent eval-
uation of the diagrams. Actually the whole computation
could be reduced to the evaluation of two-point functions.
We will see below that in the case of the Z boson one
should also consider vertex diagrams.

It has become customary to parametrize the correc-
tions proportional to M2

t by the quatity

Xt =
GF M2

t

8π2
√

2
, (1)

respectively the quantity xt which is defined using the MS
definition of the top quark mass, mt.

The quantum corrections to Γ (Z → bb̄) are divided
into universal ones which are identical for all quark species
and non-universal parts which are specific for the Zbb̄ ver-
tex. Both the universal and non-universal corrections are
divided into singlet and non-singlet parts. The singlet con-
tributions arise from those diagrams where the Z boson
and the bottom quarks of the final state couple to differ-
ent fermion lines. Another class of singlet contributions is
constituted by the diagrams where the Z boson couples to
two charged Goldstone bosons which in turn form together
with two gluons a box diagram and the gluons finally cou-
ple to the quarks in the final state. In Fig. 1 some sample
diagrams are listed. Figure 1a and b are of universal nature
whereas in c the Goldstone boson in directly coupled to the
final state bottom quark thus providing a non-universal
contribution. In this article only non-singlet diagrams will
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(a) (b) (c)

Fig. 1a–c. Singlet diagrams contributing at O(α2
sXt) to the

hadronic Z boson decay. In a and c the dashed line correspond
to the charged Goldstone boson whereas in b it may also be
the Higgs or the neutral Goldstone boson. Diagrams a and
b are of universal type whereas c constitutes a non-universal
contribution to Γ (Z → bb̄). In the displayed examples the thick
lines correspond to top quarks whereas the thin lines represent
bottom quarks

(a) (b) (c)

(d) (e)

Fig. 2a–e. Non-singlet contributions of O(α2
sXt) to the

hadronic Z boson decay. In a the dashed line corresponds to
the Higgs boson or the neutral or charged Goldstone boson.
In the diagrams b–e only the charged Goldstone boson is al-
lowed. Diagram a is of universal type whereas b–e constitute
non-universal contributions to Γ (Z → bb̄). In the displayed ex-
amples the thick lines correspond to top quarks whereas the
thin lines represent bottom quarks

be computed; the singlet contributions will be considered
elsewhere. The universal corrections of O(α2

sXt) are in
part governed by the ρ parameter [9]. A second source
for universal corrections arise from those diagrams where
only gluons couple to the light quark lines. The gluons
split into a fermion loop actually formed by bottom and
top quarks accompanied by an additional exchange of a
scalar particle (cf. Fig. 2a). The main focus of this paper is
devoted to the evaluation of the non-universal non-singlet
diagrams. Typical examples are pictured in Fig. 2b–e.

In a first step an effective Lagrangian is constructed
were the top quark is integrated out. Thereby it is con-
venient to split the fermion fields into their left and right
part and consider them separately. It is furthermore nec-
essary to decouple the bottom quark fields using the rela-
tions (see e.g. [10]):

b0′
L/R =

√
ζ
0,L/R
2,b b0

L/R , (2)

where the primes denote the quantities in the effective the-
ory and the superscript “0” reminds that we are still deal-
ing with bare quantities. The decoupling constants ζ

0,L/R
2,b

can be computed with the help of

ζ
0,L/R
2,b = 1 + Σ0h

b,V ∓ Σ0h
b,A , (3)

where Σ0h
b,V and Σ0h

b,A is the vector and axial-vector part
of the bottom quark self energy. Here only the hard part,
i.e. those diagrams containing the top quark, has to be
computed which is indicated by the index “h”. Finally the
part of the effective Lagrangian describing the interaction
of the Z boson to bottom quarks has the form

Leff ∼ [
C0

Lb̄0′
Lγµb0′

L + C0
Rb̄0′

Rγµb0′
R

]
Zµ . (4)

The residual dependence on Mt is contained in the coef-
ficient functions C0

L/R. They are obtained from the hard
part of the Zbb̄ vertex:

C0
L/R =

Γ
h,L/R

Zbb̄

ζ
0,L/R
2,b

. (5)

Here, the left and right part of the Zbb̄ vertex are defined
through:

Γh
Zbb̄,µ = γµ

[
Γh,V

Zbb̄
+ γ5Γ

h,A

Zbb̄

]
,

Γ
h,L/R

Zbb̄
= Γh,V

Zbb̄
∓ Γh,A

Zbb̄
, (6)

where it is understood that in addition to the top-induced
diagrams also the tree-level terms are included. The coeffi-
cient functions of (5) are finite after the coupling constant
αs and the mass of the top quark are expressed through
their renormalized counterparts. This is because the vec-
tor and axial-vector currents have vanishing anomalous
dimension as long as only non-singlet diagrams are con-
sidered. Thus from now on the index “0” is omitted.

In order to evaluate the partial decay rate of the Z
boson into bottom quarks at O(α2

sXt) one has to evalu-
ate the coefficient functions up to this accuracy. Further-
more the pure QCD corrections in the effective theory are
needed up to order α2

s. It can be taken over from [12] and
reads:

δ(5),QCD

= 1 +
α

(5)
s (µ)
π

+

(
α

(5)
s (µ)
π

)2 [
365
24

− 11 ζ3

+nl

(
−11

12
+

2
3

ζ3

)
+
(

−11
4

+
1
6
nl

)
ln

M2
Z

µ2

]
, (7)

where nl = 5 is the number of light quarks and ζi is Rie-
mann’s Zeta function with the value ζ3 ≈ 1.202056903.

The computation of the decoupling constants for the
bottom quark field up to order α2

sXt has been performed
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in [10]. The only missing pieces are the vector and axial-
vector contributions to the hard part of the Zbb̄ vertex.
Some sample diagrams are listed in Fig. 2. As mentioned
above only those diagrams have to be taken into account
which contain a virtual top quark. Note that for the very
calculation it is possible to nullify all external momenta.
At one-loop order only two diagrams have to be consid-
ered. This increases to 19 at the two-loop level which is
still feasible by hand. In the order we are interested in,
however, more than 350 diagrams have to be considered,
which makes the extensive use of computer algebra neces-
sary. For the present calculation the package GEFICOM [13]
has been used. It passes the generation of the diagrams
to QGRAF [14] and uses for the very computation of the
integrals the program MATAD [15] which is written in FORM
[16] for the purpose to compute one-, two- and three-loop
vacuum graphs. For a recent review concerned with the
automatic computation of Feynman diagrams see [17].

Expressed in terms of the MS top quark mass the result
for the coefficient functions read:

CL =
e

sθcθ

{
− 1

2
+

1
3
s2

θ + xt

[
1 +

α
(6)
s (µ)
π

CF

(
2 − 3

2
ζ2

+
3
2

ln
µ2

m2
t

)
+

(
α

(6)
s (µ)
π

)2(
C2

F

(
− 49

192
− 199

48
ζ2

+
253
12

ζ3 − 77
8

ζ4 +
5
4
B4 − 5

8
D3 − 1053

32
S2

+
(

15
16

− 9
4
ζ2

)
ln

µ2

m2
t

+
9
8

ln2 µ2

m2
t

)

+CACF

(
461
64

− 99
32

ζ2 − 187
24

ζ3 +
61
16

ζ4 − 5
8
B4

+
5
16

D3 +
1053
64

S2 +
(

185
48

− 11
8

ζ2

)
ln

µ2

m2
t

+
11
16

ln2 µ2

m2
t

)
+ CF Tnl

(
− 95

48
+

4
3
ζ2 − ζ3

+
(

−13
12

+
1
2
ζ2

)
ln

µ2

m2
t

− 1
4

ln2 µ2

m2
t

)

+CF T

(
149
240

− 1
60

ζ2 − 35
8

ζ3 +
729
40

S2

+
(

−13
12

+
1
2
ζ2

)
ln

µ2

m2
t

− 1
4

ln2 µ2

m2
t

))]}

=
e

sθcθ

{
− 1

2
+

1
3
s2

θ + xt

[
1 +

α
(6)
s (µ)
π

(
8
3

− 2ζ2

+2 ln
µ2

m2
t

)
+

(
α

(6)
s (µ)
π

)2(
62149
2160

− 21337
1080

ζ2

+
367
108

ζ3 − 67
36

ζ4 − 5
18

B4 +
5
36

D3 +
1557
80

S2

+nl

(
−95

72
+

8
9
ζ2 − 2

3
ζ3

)
+
(

589
36

− 55
6

ζ2

+nl

(
−13

18
+

1
3
ζ2

))
ln

µ2

m2
t

+
(

55
12

− 1
6
nl

)
ln2 µ2

m2
t

)]}
, (8)

CR =
e

sθcθ

1
3
s2

θ ,

with mt = mt(µ). After the second equal sign the colour
factors CF = 4/3, CA = 3 and T = 1/2 have been inserted.
ζ2 = π2/6 and ζ4 = π4/90. sθ and cθ are the sine and
cosine of the weak mixing angle. The constants B4, D3
and S2 typically appear in the result of three-loop vacuum
integrals and read [18,9,19]:

S2 =
4

9
√

3
Cl2

(π

3

)
≈ 0.260 434 ,

D3 = 6ζ3 − 15
4

ζ4 − 6
(
Cl2

(π

3

))2
≈ −3.027 009 ,

B4 = 16Li4

(
1
2

)
− 13

2
ζ4 − 4ζ2 ln2 2

+
2
3

ln4 2 ≈ −1.762 800 . (9)

Note that according to the QED Ward identity the univer-
sal corrections induced by the diagrams in Fig. 2a cancel
in the coefficient functions against the corresponding part
in the quark self energy. As we consider in addition the
bottom quark to be massless the right-handed coefficient
function sticks to its Born value. Using the relation be-
tween mt and the on-shell mass Mt [20] one gets:

COS
L =

e

sθcθ

{
− 1

2
+

1
3
s2

θ + Xt

[
1 − 2ζ2

α
(6)
s (µ)
π

+

(
α

(6)
s (µ)
π

)2(
1054
135

− 19897
1080

ζ2 +
403
108

ζ3

− 67
36

ζ4 − 4
3
ζ2 ln 2 − 5

18
B4 +

5
36

D3 +
1557
80

S2

+nl

(
−1

3
+

14
9

ζ2 − 2
3
ζ3

)

+
(

−31
6

+
1
3
nl

)
ζ2 ln

µ2

M2
t

)]}
, (10)

COS
R = CR .

Let us now turn to a brief numerical discussion of the
new results. The decay rate can be computed with the
help of

Γ (Z → bb̄) =
NCMZ

24π

(
C2

L + C2
R

)
δ(5),QCD . (11)

Actually two scales are involved in the process, namely
MZ and the mass of the top quark. The resummation of
potentially large logarithms is, however, trivial as both
CL/R and δ(5),QCD are separately renormalization group
invariant. Thus the scale parameter µ may be set to mt,
respectively, Mt in the coefficient functions and to MZ in
the massless corrections. For these choices the numerical
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expansions of the ingredients for (11) read:

δ(5),QCD = 1 +
α

(5)
s (MZ)

π
+ 1.409

(
α

(5)
s (MZ)

π

)2

,

CL =
e

sθcθ

{
− 1

2
+

1
3
s2

θ + xt

[
1 − 0.623

α
(6)
s (µt)

π

+0.190

(
α

(6)
s (µt)

π

)2 ]}
,

COS
L =

e

sθcθ

{
− 1

2
+

1
3
s2

θ + Xt

[
1 − 3.290

α
(6)
s (Mt)

π

−9.288

(
α

(6)
s (Mt)

π

)2 ]}
, (12)

with µt = mt(mt). nl = 5 has been chosen.
Concerning the enhanced corrections of O(Xt) to the

coefficient functions the same observations can be made as
for the ρ parameter [9] and the various quantities in con-
nection with the Higgs decay [21,10]: Expressed in terms
of the on-shell top quark mass the leading order term is
“screened” by the QCD corrections as they enter with a
different sign. On the other hand, the coefficients turn out
to be much smaller in the MS scheme. Actually the coeffi-
cient in front of the three-loop term is smaller by a factor
of 50 as compared to the corresponding one in the on-shell
scheme. Furthermore the sign is alternating which also in-
dicates a faster convergence if the MS mass is used for the
parameterization.

Inserting (12) into (11) finally leads to the following
M2

t -enhanced terms:

Γ xt(Z → bb̄) =
NCMZα

6s2
θc

2
θ

(
−1 +

2
3
s2

θ

)
×xt [1 + 0.0161 + 0.0014] , (13)

ΓXt

OS(Z → bb̄) =
NCMZα

6s2
θc

2
θ

(
−1 +

2
3
s2

θ

)
×Xt [1 − 0.074 − 0.0130] , (14)

where the values α
(5)
s (MZ) = 0.118, α

(6)
s (Mt) = 0.107

and α
(6)
s (mt) = 0.108 have been used. The numbers in

the squared brackets correspond to the corrections with
increasing power in αs. The index OS reminds on the
definition of the top quark mass used and as before the
index MS is suppressed. In the MS scheme the second
order QCD corrections amount to roughly 9% of the first
order ones, however, the overall size is quite small. The
order αs corrections to the leading Xt term in the on-
shell scheme is almost by a factor of five larger than in
the MS scheme and the corresponding O(α2

s) corrections
amount to almost 18% of the O(αs) term. It is actually
almost as large as the O(αs) term in (13).

To summarize, quantum corrections of O(α2
sxt) to the

decay of the Z boson into bottom quarks have been com-
puted. If we assume that the observations made at one-

and two-loop level are also true at order α2
sXt a substan-

tial part of the corrections is available. Expressed in terms
of the MS mass they turn out to be tiny. In the on-shell
scheme the quantum corrections are much larger and they
screen the leading Xt term by almost 9%. Note that the
newly computed term of O(α2

sxt) makes it possible to use
the combination of the three-loop ρ parameter [9] and the
partial width Γ (Z → bb̄) in a consistent way.
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